Challenge Project

Federal Supreme Court Data Viewer

Let's build a Shiny app for anyone to analyse data on Swiss Federal Supreme Court judgments! 📊

4

⛶  Fullscreen ↓  Download

You can find the shiny app here: https://data-viewer-app.shinyapps.io/scd-viewer/

📎 SDC.pdf

scd-viewer

The Swiss Federal Supreme Court Dataset (SCD) is the largest open-access dataset on Swiss judgments, with 30 variables documenting all 113'367 Federal Supreme Court judgments since 2007.

With this challenge, we want to enable anyone to make their own quantitative analysis of this rich data, even if they have zero prior programming knowledge: We will build a Shiny app that lets users interact with the data on Swiss Federal Supreme Court judgments and run simple analyses themselves.

💡 Idea behind the challenge

The freshly released Swiss Federal Supreme Court Dataset includes all Swiss Federal Supreme Court judgments since 2007. It documents them with 30 variables, which contain case information, the area of law, information about the appealed judgment, the parties, the case outcome, or about citations and publication status.

The SCD enables high-quality quantitative insights into the jurisprudence of the highest Swiss court (see, for example, Merane 2021 or Geering 2021). However, using and analysing the dataset generally requires some knowledge of data science methods. The lack of quantitative methods in the current curricula of most Swiss law schools means that many lawyers, judges and jurists, as well as interested laypersons, currently can't use this data themselves.

Shiny apps such as the gorgeous CRAN Explorer, the highly functional ExPanD data explorer, or the highly intuitive Bolivia Life of Labor app inspire us. At the Open Legal Lab 2023, we want to create a Shiny app that enables anyone to create their own simple analysis of the Federal Supreme Court dataset, without needing programming knowledge or Excel tricks.

🎯 Goal of the challenge

Create and release a Shiny app that enables simple quantitative analyses of the Federal Supreme Court jurisprudence documented in the SCD without any programming knowledge.

🚀 Roadmap

This will have to be discussed at the hackathon.

  • [x] Collect data
  • [ ] Define main analysis types as use cases
  • [ ] Create Shiny app
  • [ ] Prepare presentation
  • [ ] Deploy Shiny app
  • [ ] ✨ Extra: Automatically integrate most recent judgments through SCD updates
  • [ ] ✨ Extra: Translate user interface to German, French, Italian, Rumantsch
This content is a preview from an external site.
 

Event finished

Edited (version 47)

01.05.2023 13:13 ~ caroline

Project

Edited (version 45)

01.05.2023 12:39 ~ caroline

Edited (version 43)

01.05.2023 12:39 ~ caroline

Edited (version 41)

01.05.2023 12:38 ~ caroline

Edited (version 39)

01.05.2023 12:37 ~ caroline

Edited (version 37)

01.05.2023 12:24 ~ caroline

My Shiny App ✨

30.04.2023 18:24 ~ oleg

Edited (version 34)

30.04.2023 18:19 ~ caroline

Joined the team

30.04.2023 13:21 ~ luka_nenadic

Event started

Edited (version 24)

25.04.2023 22:01 ~ flo

Joined the team

21.04.2023 21:26 ~ caroline

Edited (version 16)

21.04.2023 21:17 ~ flo

Edited (version 13)

21.04.2023 21:14 ~ flo

Edited (version 11)

21.04.2023 21:13 ~ flo

Edited (version 8)

21.04.2023 20:49 ~ flo

Repository updated

21.04.2023 20:49 ~ flo

Edited (version 4)

21.04.2023 20:49 ~ flo

Joined the team

21.04.2023 20:48 ~ flo

First post View challenge

21.04.2023 20:48 ~ flo

Challenge

 
Contributed 1 year ago by flo for Open Legal Lab 2023
Alle Teilnehmer*innen, Sponsor, Partner, Freiwilligen und Mitarbeiter*innen unseres Hackathons sind verpflichtet, dem Hack Code of Conduct zuzustimmen. Die Organisatoren werden diesen Kodex während der gesamten Veranstaltung durchsetzen. Wir erwarten die Zusammenarbeit aller Teilnehmer*innen, um eine sichere Umgebung für alle zu gewährleisten. Weitere Einzelheiten zum Ablauf der Veranstaltung finden Sie unter Richtlinien auf unsere Webseite.

Creative Commons LicenceDie Inhalte dieser Website stehen, sofern nicht anders angegeben, unter einer Creative Commons Attribution 4.0 International.